Welcome to
Biomedical Engineering
100%
Of Ph.D. students are fully funded
2,000+
Texas Biomedical Engineering alumni around the world
81%
Of undergraduate students participate in research
Research Focus
Vision research, biomedical sensors, laser applications, neuroprosthesis designResearch InterestsResearch interests are in developing objective tests for visual function and finding new applications for lasers in ophthalmology. Current projects include a VEP visual function based method for early diagnosis of glaucoma, a feedback control system for panretinal photocoagulation, an improved delivery system for cyclo-photocoagulation, and a holmium-YAG technique for drilling holes in the stapes bone. In the past, he has supervised research on RK surgery to correct myopia and thermokeratoplasty to correct hyperopia. A method for acquiring non-contact endothelial cell counts was developed that relied on computer assisted image analysis to determine cell boundaries. He has taught the neuroprosthesis course for the last six years and have supervised several rehabilitation engineering theses.
Research Focus
Our lab's research is focused on molecular modeling of biological systems for pharmaceutical and biomedical applications. Computational biology and molecular modeling that integrate our knowledge in computer science, chemistry, physics and biology allow us to understand the fundamental molecular driving forces in chemistry and biology, such as molecular recognition and protein structure-function relationship. With accurate in silico prediction of molecular interactions, we seek to engineer novel molecules, from small organic molecules to protein mimetics, with controlled structure and function for therapeutic and diagnostic purposes.
Research Interests
- Computational drug discovery.
- Multiscale physical modeling of proteins and nucleic acids.
- Structure and function of protein-mimetics and biomaterials.
SELECTED PUBLICATIONS
Research Focus
Controlled drug delivery; Biomedical engineering; Biomaterials; Tissue engineering; Molecular modeling of protein structures in contact with biomaterials and tissues; Modeling of biomedical devices; Bionanotechnology; Molecular recognition processes; Polymer physics; Polymerization reaction engineering; Diffusion in polymers.
Research
Our research contributions have been in several areas of drug delivery, biomaterials, biomolecular engineering, mass transfer, kinetics and reaction engineering, polymers and biomedical engineering. The multidisciplinary approach of this research in biomolecular engineering blends modern molecular and cellular biology with engineering to generate next-generation systems and devices, including bioMEMS with enhanced applicability, reliability, functionality, and longevity. The fundamental studies of his group have provided valuable results on biomaterials design and development. Our group is known for our work on the preparation, characterization and evaluation of the behavior of compatible, cross linked polymers known as hydrogels, which have been used as biocompatible materials and in controlled release devices, especially in controlled delivery of drugs, peptides and proteins, development of novel biomaterials, biomedical transport phenomena, and biointerfacial problems. This work has led to a series of novel controlled release systems known as swelling controlled release systems, a series of pH-sensitive devices for drug delivery and a wide range of bio- and mucoadhesive systems. They include novel systems for insulin delivery to treat Type 1 diabetic patients, calcitonin delivery for osteoporosis treatment, growth hormone delivery, delivery of siRNA for treatment of Crohn's disease, ulcerative colitis and celiac disease, treatment of hemophilia by oral Factor IX delivery, new systems for interferon beta delivery for multiple sclerosis treatment, etc. Other biomedical work of his group had dealt with understanding of transport of biological compounds in tissues, analysis of polymer/tissue interactions, understanding of the behavior of biomembranes, and intelligent, recognitive systems for protein delivery.
Selected Publications
- JM Knipe, LE Strong, NA Peppas, Enzyme- and pH-Responsive Microencapsulated Nanogels for Oral Delivery of siRNA to Induce TNF-α Knockdown in the Intestine, Biomacromolecules, 17, 788-797 (2016).
- S. D. Horava and N. A. Peppas, Design of pH-Responsive Biomaterials to Enable the Oral route of Hematological Factor IX, Ann Biomed Engin., 44, 1970-1982 (2016).
N.A. Peppas and J.R. Clegg, The Challenge to Improve the Response of Biomaterials to the Physiological Environment, Regen. Biomaterials, 3, 67-71 (2016).
H. Culver, S. Steichen, M. Herrera-Alonso, N. A. Peppas, Versatile Tool for Colloidal Stability and Surface Functionalization of Hydrophobic Nanomaterials, Langmuir, 32, 5629-5636 (2016). - M.C. Koetting, J.F. Guido, M. Gupta, A. Zhang, & N.A. Peppas. pH-responsive and enzymatically-responsive hydrogel microparticles for the oral delivery of therapeutic proteins: Effects of protein size, crosslinking density, and hydrogel degradation on protein delivery. J. Control. Release, 221, 18-25 (2016).
- J.P. Shofner and N.A. Peppas, “Overview of Biodrug Delivery Systems: Disease Fundamentals, Delivery Problems and Strategic Approaches”, in "Biodrug Delivery Systems: Fundamentals, Applications and Clinical Development," M. Morishita and K. Park, eds, 1-12, Informa Healthcare, New York, NY, 2016.
- M. Morishita, E. S. Khafagy, J.P. Shofner, and N.A. Peppas, “Oral Delivery Systems”, in "Biodrug Delivery Systems: Fundamentals, Applications and Clinical Development," M. Morishita and K. Park, eds, 172-186, Informa Healthcare, New York, NY, 2016.
M. I. Neves, M. E. Wechsler, M. E. Gomes, R. L. Reis, P. L. Granja, and N. A. Peppas, Molecularly Imprinted Intelligent Scaffolds for Tissue Engineering Applications. Tissue Engineering Part B: Reviews, 23, 27-43 (2016). - A. S. Puranik, L. P. Pao, V. M. White, and N. A. Peppas.,, Synthesis and Characterization of pH-Responsive Nanoscale Hydrogels for Oral Delivery of Hydrophobic Therapeutics, Europ. J. Pharm. Biopharm., 108, 196-213 (2016).
- A. S. Puranik, L. P. Pao, V. M. White, and N. A. Peppas, In Vitro Evaluation of pH-Responsive Nanoscale Hydrogels for the Oral Delivery of Hydrophobic Therapeutics, Ind. Engin. Chem. Res., 55, 10576-10590 (2016).
- H. R. Culver, S. D. Steichen and N.A. Peppas, " A Closer Look at the Impact of Molecular Imprinting on Adsorption Capacity and Selectivity for Protein Templates", Biomacromolecules, 17, 4045-4053 (2016).
- N.A. Peppas and A. Khademhosseini, Make Better, Safer Biomaterials, Nature, 540, 335-337 (2016).
- S. D. Steichen, C. O'Connor, and N. A. Peppas, Development of a P((MAA-co-NVP)-g-EG) hydrogel platform for oral protein delivery: effects of hydrogel composition on environmental response and protein partitioning, Macromol. Biosci. DOI: 10.1002/mabi.201600266 (2017).
S. Horava and N.A. Peppas, Biodegradable Hydrophilic Carriers for the Oral Delivery of Hematological Factor IX for Hemophilia B Treatment, Intern. J. Pharmac, 514, 220-228 (2017). - H. Culver, J. Clegg and N.A. Peppas, Analyte-responsive Hydrogels: Intelligent Materials for Biosensing and Drug Delivery, Acc. Chemical Research, 50, 170-178, (2017).
S. Horava and N.A. Peppas, "Recent Advances in Hemophilia B Therapy”, Drug Delivery Transl. Res., 7, 359-371 (2017). - J. Vela-Ramirez, L. Sharpe and N.A. Peppas, “Current state and challenges in developing oral vaccines”, Adv Drug Delivery Revs, 114, 116-131 (2017).
M. Yoshida, N. Kamei, K. Muto, J. Kunisawa, K. Takayama, N. A. Peppas, M. Takeda-Morishita, “Complexation hydrogels as potential carriers in oral vaccine delivery systems”, Europ. J. Pharm. Biopharm., 112, 138-142 (2017) - C. O'Connor, S. Steichen, N.A. Peppas, Development and characterization of stimuli-responsive hydrogel microcarriers for oral protein delivery, J. Biomed. Mater. Res, A, 105, 1243-1251 (2017).
- John R. Clegg, Justin X. Zhong, Afshan S. Irani, Joann Gu, David S. Spencer and Nicholas A. Peppas, Characterization of protein interactions with molecularly imprinted hydrogels that possess engineered affinity for high isoelectric point biomarkers, J. Biomed. Mater. Res, A, 105, 1565-1574, (2017).
JR Clegg, ME Wechsler, NA Peppas, “Vision for Functionally Decorated and Molecularly Imprinted Polymers in Regenerative Engineering, Regen. Engin. Transl. Medicine, 3, 166-175 (2017). - HR Culver, NA Peppas. Protein-Imprinted Polymers: The Shape of Things to Come? Chemistry of Materials 29, 5753–5761 (2017)
H.R. Culver, I. Sharma, M.E. Wechsler, E.V. Anslyn and N.A. Peppas, “Charged poly(N-isopropylacrylamide) nanogels for use as differential protein receptors in a turbidimetric sensor array”, Analyst, 142, 3183-3193 (2017). - M.I. Neves, M.E. Wechsler, M.E. Gomes, R.L. Reis, P.L. Granja and N.A. Peppas, “Molecularly Imprinted Intelligent Scaffolds for Tissue Engineering Applications”, Tissue Engineering, B, 23, 27-43 (2017).
- J.T. Peters, S. Varghese, D. Subramanian, N.A. Peppas, “Surface Hydrolysis-Mediated PEGylation of Poly(isopropyl Acrylamide) Based Nanogels, Regen. Biomaterials, 4, 281-287 (2017).
- J.T. Peters, S. S. Hutchinson, N. Lizana, I. Verma, N.A. Peppas, “Synthesis and characterization of poly(N-isopropyl methacrylamide) core/shell nanogels for controlled release of chemotherapeutics”, Chem. Eng. J., published DOI 10.1016/j.cej.2018.01.09 (2018).
- L.A. Sharpe, J.E. Vela Ramirez, O.M. Haddadin, K.A. Ross, B. Narasimhan, N.A. Peppas, “pH-Responsive Microencapsulation Systems for the Oral Delivery of Polyanhydride Nanoparticles”, Biomacromolecules, 19, 793-802 (2018).
- J.X. Zhong, J.R. Clegg, E.W. Ander, N.A. Peppas, “Tunable Poly(methacrylic acid-co-acrylamide) Nanoparticles Through Inverse Emulsion”, J. Biomed. Mater. Res., A, 106A, 1677–1686 (2018).
- A.M. Wagner, M.P. Gran, N.A. Peppas, “Designing the New Generation of Intelligent Biocompatible Carriers for Protein and Peptide Delivery”, Acta Pharmaceutica Sinica B, 8, 147-164 (2018).
- Y Fukuoka, ES Khafagy, T Goto, N Kamei, K Takayama, NA Peppas, “Combination Strategy with Complexation Hydrogels and Cell-Penetrating Peptides for Oral Delivey of Insulin, Biol. Pharmac. Bull. 41, 811-814 (2018).
- A.M. Wagner, D.S. Spencer, N.A. Peppas, “Advances Architectures in the Design of Responsive Polymers for Cancer Nanomedicine, J. Appl. Polym. Sci., 135, 46154 (2018).
N.A. Peppas and J. Vela Ramirez, “Molecularly and Cellularly Imprinted, Intelligent Scaffolds for Tissue Engineering and Regenerative Medicine”, in X.B. Fu and N. A. Peppas, eds, “Advances in Biomaterials and Tissue Regeneration”, Beijing, 2018. - G. Orive, N. Ashammakhi, A. Dolatshahi-Pirouz, R. Hernandez, A. Khademhosseini, D. F. Emerich, J. Vela Ramirez, E. Santos Vizcaíno, N.A. Peppas, J. L. Pedraz, “3D encapsulated cells to release biologically active products in the eye”, Progress in Retinal and Eye Research, in press.
- T. M. De Witte, L. Fratila-Apachitei, A. A. Zadpoor and N. A. Peppas, “Bone Tissue Engineering via Growth Factor Delivery: From Scaffolds to Complex Matrices”, Regen. Biomaterials, in press.
- D.S. Spencer, B. C. Luu, D. W. Beckmann and N.A. Peppas, J. Polym. Sci., Polym. Chem, 56, 1536-1544 (2018).
- H. F. Florindo, V. Sainz, L. I. Moura, C. Peres, A. I. Matos, A. S Viana, A. M. Wagner, J. E. Vela Ramirez, T. Barata, M. Gaspar, S. Brocchini, M. Zloh, N. A. Peppas, R. Satchi-Fainaro, “a- Galactosylceramide and Peptide-based Nano-vaccine Synergistically Induced a Strong Tumor Suppressive Effect in Melanoma”, Acta Biomaterialia, published online DOI: doi.org/10.1016/j.actbio.2018.06.029
Research Focus
Biomedical informatics; Machine learning; Biomedical image processing; Clinical decision support; Medical decision-making.
Research Interests
Under the direction of Dr. Mia K. Markey, the mission of the Biomedical Informatics Lab (BMIL) is to design decision support systems for clinical decision making and scientific discovery. The BMIL seeks opportunities to advance health-related quality of life and health equity. For example, a current project seeks to develop a decision support system that will enable breast cancer patients, in consultation with their healthcare providers, to choose a reconstruction strategy with maximal potential to optimize psychosocial adjustment.
Selected Publications
Research Focus
Biotechnology
Research Interests
Since 2009 our laboratory has been focused on the discovery and development of protein therapeutics and on the analysis of adaptive immune responses.
Current projects include:
- Engineering and preclinical/clinical development of human enzyme therapeutics for cancer treatment.
- Development of methods for the molecular-level understanding of antibody responses to immune challenge.
- Analysis of the antibody repertoire elicited by viral infection (e.g. HIV-1) and vaccination to aid the development of more efficient vaccines.
- Engineering of antibody therapeutics displaying enhanced ability to recruit cytotoxic leukocytes and blood proteins (complement) for the effective clearance of pathogens.
Earlier work by the Georgiou lab had focused on redox homeostasis and protein biogenesis in bacteria and on the development of platform technologies for protein expression and engineering. These studies led to a number of mechanistic advances and to new technologies that are being used commercially for therapeutic protein manufacturing and protein engineering. Dr. Georgiou is co-inventor of 29 issued and 46 pending US patents. Notably, 16 different technology suites (comprising either one or multiple patents) have been licensed to majorepharmaceutical and biotechnology companies.
SELECTED PUBLICATIONS
Upcoming Events
Thursday, May 01
3:30PM - 4:30PM
Tuesday, May 13
Targeting stromal cells for immuno-engineering
10:00AM - 11:00AM
News

Biomedical Engineering Graduate Program Among Top 20 in U.S. Yet Again
The University of Texas at Austin’s Department of Biomedical Engineering graduate program ranked No. 19 in U.S. News & World Report’s 2025-2026 graduate engineering program rankings, released on Tuesday.
Keep reading
Pharmacoengineering Program Enables Advanced Drug Development and Delivery
Graduate students at The University of Texas at Austin have a new opportunity to revolutionize how medicines are developed and delivered. The graduate portfolio program in pharmacoengineering is an interdisciplinary effort that bridges expertise in pharmaceutics, chemistry, engineering, biochemistry, biologics and drug metabolism.
Keep reading
5 Questions With Jeongwook "Luke" Yun: An Austin Inno Under 25 Recipient
Jeongwook “Luke” Yun, a senior in The University of Texas at Austin's Department of Biomedical Engineering, is being recognized for his passion, dedication and transformative work involving the intersection between artificial intelligence (AI) and health care.
Keep readingResearch Areas
-
Biomaterials
A wide range of fundamental Biomaterials approaches is actively explored for regenerative and...
-
Biosensors and Instrumentation
The development of advanced biosensors and Instrumentation is a focal point for several of our...
-
Cell and Tissue Engineering
The University of Texas at Austin Department of Biomedical Engineering is a hub of pioneering...
-
Computational Biomedical Engineering
Computational Biomedical Engineering harnesses the world-class computational facilities at UT...
-
Drug Discovery and Delivery
Integrating engineering principles with biomedicine, our faculty specialize in developing...
-
Imaging and Image-Guided Interventions
The field of biomedical imaging employs physics, mathematics, computational science, and...
-
Multiscale Biophysics and Biomechanics
While helping patients is the ultimate goal of biomedical engineering, faculty in our department...
-
Neuroengineering
Neuroengineering is a growing area that develops methods to improve neurological health and...
Spotlights
Discover what's happening at Texas BME